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Abstract An analytically solvable Woods–Saxon potential for � �= 0 states is pre-
sented within the framework of Supersymmetric Quantum Mechanics formalism.
The shape-invariance approach and Hamiltonian hierarchy method are included in
calculations by means of a translation of parameters. The approximate energy spec-
trum of this potential is obtained for � �= 0 states, applying the Woods–Saxon square
approximation to the centrifugal barrier term of the Schrödinger equation.

Keywords Supersymmetric quantum mechanics · Hamiltonian hierarchy method ·
Woods–Saxon potential · Diatomic molecules

1 Introduction

Introductory courses in quantum chemistry have been refrained from dealing with
more than single particle considerations, since the molecular problems have been
considerably complex in chemical structures. A systematic method which is used for
fitting Rydberg-Klein-Rees (RKR) data with polynomial expressions for instance has
been introduced to study the potential energy curve of a diatomic molecule in large
internuclear distances [1]. In addition, the Hill determinant method has been developed
for constructing potential energy curves of diatomic molecules [2]. In this method, the
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Dunham and the perturbed Morse oscillator potentials have been used to fit spectro-
scopic data. An algebraic procedure based on a Bogoliubov transformation has been
derived to generalize anharmonic oscillator wave functions [3]. The dynamical Lie
algebraic approach has been applied to investigate the energy transfer in the collinear
collision between an atom and an anharmonic oscillator [4]. Recently, the number of
exact solutions presented on these types of topics have been increased by using various
methods and potentials [5–9]. The supersymmetric quantum mechanics (SQM) is one
of the best frameworks used to determine energy eigenvalues and eigenfunctions of
quantum mechanical problems. The SQM has been appeared about 25 years ago and
has been considering as a new field of research, providing not only a supersymmetric
interpretation of the Schrödinger equation but also important contributions to a vari-
ety of non-relativistic quantum mechanical problems [10]. One of the most important
approaches in the SQM has been presented by Gendenshtein who was introduced a
discrete parametrization approach which was labelled “shape-invariance” approach
[11]. The validity of this approach has been attempted by using the shape-invariance
potentials and their exact energy levels have been found analytically by making use
of the shape-invariance approach [12,13].

The association of factorization and hierarchy of Hamiltonian methods with the
SQM formalism is applied to obtain the approximate energy spectra of non-exactly
solvable [14,15], the isospectral [16], the periodic [17] and the exponential types of
potentials [18,19]. Using the physical arguments, it is possible to make an ansatz for
the superpotential which satisfies the Riccati equation. Therefore, the Riccati equation
is solved to create a superpotential. These steps are successfully used to obtain the
energy spectra of the chemical systems which are well-fitted by exponential types of
potentials.

In this article, an analytically solvable effective potential model through the SQM
formalism is presented by using the shape-invariance approach and the hierarchy of
Hamiltonian method. The potential is selected as the Woods–Saxon which is one of the
exponential types of potentials. After having introduced the SQM formalism briefly in
the Sect. 2, the Woods–Saxon potential and its shape-invariance properties are inves-
tigated for a general situation. The Woods–Saxon square approximation is applied to
the centrifugal barrier term of the Schrödinger equation under the condition of the
first-term approximation. The obtained results are compared with those of the shape-
invariance approach. A set of the energy eigenvalues is obtained for � �= 0 states.
Finally, the energy spectrum obtained by means of the SQM formalism is discussed
at the end of paper.

2 Supersymmetric quantum mechanics

The simplest way of generating a new exactly solvable Hamiltonian is to consider an
invertible bounded operator. In this case, a given Hamiltonian and its supersymmetric
partner possess an identical spectra which is excepted the zero energy of ground state.
In the SQM formalism, we have two nilpotent operators, Q and Q+, satisfying the
following algebras
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{Q,Q+} = HS, {Q,Q} = {Q+,Q+} = 0, (1)

where HS is the supersymmetric Hamiltonian. Therefore, the supercharges Q and
Q+ commute with HS which is responsible for the degeneracy. This algebra can be
realized as follows

Q =
(

0 0
A− 0

)
, Q+ =

(
0 A+
0 0

)
, (2)

where A± are bosonic operators. Beginning with this realization, the supersymmetric
Hamiltonian HS is given by

HS =
(
A+A− 0

0 A−A+
)

=
(
H− 0

0 H+
)
. (3)

H± are called supersymmetric partner Hamiltonians (see Ref. [10] for a review),

E(+)ν = E
(−)
ν+1. (4)

In the case of the non-spontaneously broken supersymmetry, this lowest level is of
the zero energy, E(−)1 = 0. The Schrödinger equation for a particle of mass m in a
spherically symmetric potential is written

[
− h̄2

2m

d2

dr2 + V (r)

]
�(r) = E�(r), (5)

where �(r) is the wave function, V (r) is the potential and E is the energy. In the
Hamiltonian form, this equation is given as

H± = − h̄2

2m

d2

dr2 + V±(r) = A∓A±, (6)

where V±(r) are called partner potentials. The operators A± are defined in terms of
the superpotential W(r)

A± = ∓ h̄√
2m

d

dr
+W(r), (7)

which satisfies the Riccati equation as a consequence of the factorization of the Ham-
iltonians H±;

W 2 ± h̄√
2m
W ′ = V±(r). (8)

123



J Math Chem (2008) 43:944–954 947

If V+(r) and V−(r) have similar shapes, they are said to be shape-invariant, and they
satisfy the following relation

V+(r, a1) = V−(r, a2)+ R(a2), (9)

where a1 denotes a set of parameters and a2 is a function of a1 (a2 = f (a1)). More-
over,R(a2) is independent of r . For a given HamiltonianH1, it is possible to construct
its hierarchy of Hamiltonians. In this case, we have

H1 = − h̄2

2m

d2

dr2 + V1(r) = A+
1 A

−
1 + E

(1)
0 , (10)

where E(1)0 is the ground state eigenvalue of V1(r). The bosonic operators are defined
by Eq. 7 whereas the superpotential W1(r) satisfies the Riccati equation as follows

W 2
1 − h̄√

2m
W ′

1 = V1(r)− E
(1)
0 . (11)

The unnormalized energy eigenfunction for the lowest state is related to the superpo-
tential W1;

�
(1)
0 (r) = Nexp

(
−

√
2m

h̄

∫ r

0
W1(r̄)dr̄

)
, (12)

whereN is the normalization constant. On the other hand, the supersymmetric partner
Hamiltonian is given by

H2 = A−
1 A

+
1 + E

(1)
0 = − h̄2

2m

d2

dr2 +
(
W 2

1 + h̄√
2m
W ′

1

)
+ E

(1)
0 . (13)

Thus, H2 is obtained in terms of a new pair of bosonic operators, A±
2 ,

H2 = A+
2 A

−
2 + E

(2)
0 = − h̄2

2m

d2

dr2 +
(
W 2

2 − h̄√
2m
W ′

2

)
+ E

(2)
0 , (14)

where E(2)0 is the lowest eigenvalue of H2 and W2 satisfy the Riccati equation

W 2
2 − h̄√

2m
W ′

2 = V2(r)− E
(2)
0 . (15)

The hierarchy of Hamiltonians is constructed with a simple relation, connecting the
eigenvalues and eigenfunctions of the ν-members [10],

E(1)ν = E
(ν+1)
0 , (16)
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Hν = A+
ν A

−
ν + E

(ν)
0 , (17)

A±
ν = ∓ h̄√

2m

d

dr
+Wν(r), (18)

�(1)ν = A+
1 A

+
2 . . . A

+
ν ψ

(ν+1)
0 (19)

where �(1)0 (r) is given by Eq. 12. With the help of Eqs. 16–19, we can work out the
energy eigenvalues and eigenfunctions for the shape-invariance potentials. To clarify
the shape-invariance approach, we will explicitly compute the energy eigenvalues for
the Woods–Saxon potential (� �= 0 states).

3 Woods–Saxon potential and its shape-invariance property

We consider the following potential which consists of the well-known Woods–Saxon
and its square form

V (r) = − V0

1 + e

(
r−R0
a

) + C(
1 + e

(
r−R0
a

))2 . (20)

As a definition of the potential, the first term on the right-hand side of Eq. 20 denotes
the volume Woods–Saxon potential and the second one represents a potential which
corresponds to the square of first term, where r is the center-of-mass distance. R0 is
the width of the potential, V0 is the potential depth, a is the diffuseness parameter and
lastly C is the setting parameter which is proposed by us (C > 0). In our calculations,
we used a different form of the potential that the numerators and denominators of
Eq. 20 are multiplicand by exp[−(r − R0)/a];

V1(r) ≡ V (r) = − V0e
−

(
r−R0
a

)

1 + e
−

(
r−R0
a

) + C e
−2

(
r−R0
a

)

(
1 + e

−
(
r−R0
a

))2 . (21)

The Schrödinger equation for diatomic molecules with the Woods–Saxon potential
and its squared form is written as

− h̄2

2m
∇2�n�m(r)+ V (r)�n�m(r) = E�n�m(r), (22)

and the Hamiltonian hierarch method is used to find a solution of Eq. 22. As a wave
equation with spherically symmetric potential, Eq. 22 can be separated in spherical
coordinates to give
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�n�m(r) = 1

r
χn�(r)Y�m(θ, φ), (23)

where χn�(r) is a radial wave function whereas Y�m(θ, φ) is a spherical harmonics
with angular momentum quantum numbers � and m (n is commonly called the prin-
ciple quantum number). We can then obtain the radial Schrödinger equation for all of
the angular momentum states

− h̄2

2m

d2

dr2χnl(r)+
(
V (r)+ �(�+ 1)h̄2

2mr2

)
χn�(r) = Eχn�(r) (24)

by putting Eq. 23 into Eq. 22. As a generalization of the potential given in Eq. 21, it
is substituted into the Schrödinger equation for the zero angular momentum states;

− h̄2

2m

d2

dr2χn(r)+ V (r)χn(r) = Eχn(r). (25)

Substituting the ground state eigenfunction χ0(r) (n = 0) into Eq. 25, we obtain

W 2
1 − h̄√

2m

dW1

dr
= V (r)− E

(1)
0 , (26)

where E(1)0 is the lowest energy-eigenvalue or the ground state energy. Through the
superalgebra, we take superpotential

W1 = − h̄√
2m

(
S1 + S2

e−α(r−R0)

1 + e−α(r−R0)

)
, (27)

satisfies the associated Riccati equation (Eq. 11) and substituting this expression into
Eq. 26, we find the following identity

h̄2S2
1

2m
+ h̄2(2S1S2 − αS2)

2m
(
1 + eα(r−R0)

) + h̄2(S2
2 + αS2)

2m
(
1 + eα(r−R0)

)2

= − V0

1 + e

(
r−R0
a

) + C(
1 + e

(
r−R0
a

))2 − E
(1)
0 . (28)
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With the comparison of the each side of the Eq. 28, we obtain

α = 1/a,

h̄2S2
1

2m
= −E(1)0 ,

h̄2

2m
(2S1S2 − αS2) = −V0,

h̄2

2m
(S2

2 + αS2) = C. (29)

The solution of Eq. 29 yields

S1 = U

2S2
− S2

2
, (30)

S2 = −α
2

±
√(α

2

)2 + 2mC

h̄2 , (31)

where U = 2m
h̄2 (C − V0). It is seen from Eq. 31 that S2 has two roots because of the

sign in front of the square root term in the second part of the expression. We selected
however the positive-sign one in calculations because this selection would of course
be a right choice to ensure the well-behaved nature of the eigenfunction at the origin
and the infinity. After from this point, the supersymmetric partner potentials can be
expressed by using Eq. 27. First, we substituted Eqs. 30 and 31 into Eq. 27, and then
solved Eq. 8 for both V+(r) and V−(r). Consequently, these partner potentials are
obtained as follows

V+(r) = h̄2

2m

[
S2

1 + U − S2
2

1 + eα(r−R0)
+ S2

2(
1 + eα(r−R0)

)2 + αS2

1 + eα(r−R0)

− αS2(
1 + eα(r−R0)

)2

]
, (32)

V−(r) = h̄2

2m

[
S2

1 + U − S2
2

1 + eα(r−R0)
+ S2

2(
1 + eα(r−R0)

)2 − αS2

1 + eα(r−R0)

+ αS2(
1 + eα(r−R0)

)2

]
. (33)

The shape-invariance approach given in Eq. 9 can be written from Eqs. 32 and 33
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V+(r, S2) = V−(r, S2 − α)+ h̄2

2m

[(
U

2S2
− S2

2

)2

−
(

U

2(S2 − α)
− S2 − α

2

)2
]
.

(34)

The shape-invariance approach which was introduced by Gendenshtein [11] is there-
fore precisely provided by comparing Eq. 9 with Eq. 34 and using the transformation
of parameters S2 → a1, S2 − α → a2,

R(a2) = h̄2

2m

[(
U

2a1
− a1

2

)2

−
(
U

2a2
− a2

2

)2
]
. (35)

On repeatedly using the shape-invariance approach, it is then clear that we can form
a set of Hamiltonians in terms of k,

H(k) = − h̄2

2m

d2

dr2 + V−(r; ak)+
k∑
s=1

R(as), (36)

where H(k) is a series of Hamiltonians, k = 1, 2, 3, . . ., and H(1) ≡ H−. The bound
state energy spectrum of H(k) is therefore obtained by

E
(k)
0 =

k∑
s=1

R(as) (37)

and its nth level is coincident with the ground state of the HamiltonianHn. The energy
eigenvalues of Hamiltonian are given by E(−)0 = 0 and

E(−)n = h̄2

2m

[(
U

2S2
− S2

2

)2

−
(

U

2(S2 − nα)
− S2 − nα

2

)2
]
. (38)

Hence, the energy levels of Woods–Saxon potential plus its squared form are found
from the relationshipEn = E

(−)
n +E(1)0 . RecallingE(1)0 from Eq. 29, we can rearrange

its value in terms of S2,

E
(1)
0 = − h̄

2S2
1

2m
= − h̄2

2m

[
U

2S2
− S2

2

]2

(39)

using the equalities S1 = α
2 − 2mV0

h̄2
1

2S2
and α = 1

S2

(
2mC
h̄2 − S2

2

)
. Therefore, the

corresponding eigenvalue equation reads

En = E(−)n + E
(1)
0 = − h̄2

2m

[
U

2(S2 − nα)
− S2 − nα

2

]2

, (40)
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where it is note that one can write a relationship between V (r) and V−(r).
The Hamiltonian of the Woods–Saxon potential for � �= 0 cases is written as

H = − h̄2

2m

d2

dr2 − V0

1 + e

(
r−R0
a

) + h̄2�(�+ 1)

2mr2 . (41)

The second term on the right-hand side of Eq. 41 comes from the Woods–Saxon
potential and third term in the same side comes from the centrifugal barrier. This last
term is preventive to build the same superfamily as in � �= 0 cases, since the full
potential is not exactly solvable. However, several numerical approaches have been
utilized in order to evaluate the spectra of energy eigenvalues and eigenfunctions [20].
Now, we introduce a new effective potential whose its functional form is given as
follows

Veff = − V0

1 + e

(
r−R0
a

) + h̄2�(�+ 1)

2ma2

(
1 + e

(
r−R0
a

))2 . (42)

In the cases of a = R0/2 and the small value of a, the second term on the right-hand
side of Eq. 42 behaves as a centrifugal barrier term of Eq. 41 in the first-term approx-
imation. If we want to investigate this term, it should be expanded according to the
exponential part;

h̄2�(�+ 1)

2ma2

(
1 + e

(
r−R0
a

))2 = h̄2�(�+ 1)

2ma2

[
1 +

(
1 + r−R0

a
+ 1

2!
(
r−R0
a

)2 + · · ·
)]2

≈ h̄2�(�+ 1)

2mr2 . (43)

The first-term approximation means that the second and higher order terms can be
ignored in the expended exponential part of Eq. 43. Therefore, the effective potential
given by Eq. 42 has the same functional form as the potential part of Eq. 41. Further-
more, we can solve the Schrödinger equation by the factorization method of the SQM
because the Schrödinger equation for this potential is solvable analytically under the
condition of the shape-invariance approach. In this case, if we can perform the param-
eter transformationC → h̄2�(�+1)/2ma2, comparing Eq. 42 with Eq. 20, the energy
levels of the effective potential in Eq. 42 are approximately obtained as follows

En� �=0 = − h̄2

2ma2 ×
⎡
⎢⎣

⎛
⎝

2mV0a
2

h̄2 − �(�+ 1)

1 + 2n− √
1 + 4�(�+ 1)

⎞
⎠

2

+ 1

2

(
2mV0a

2

h̄2 − �(�+ 1)

)

+ 1

16

(
1 + 2n− √

1 + 4�(�+ 1)
)2

]
, (44)
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or in the closed form

En� �=0 = − h̄2

32ma2

⎡
⎣1 + 2n− √

1 + 4�(�+ 1)+
4

(
2mV0a

2

h̄2 − �(�+ 1)
)

1 + 2n− √
1 + 4�(�+ 1)

⎤
⎦

2

.

(45)

It is well-known that the energy spectrum of actual diatomic molecules can be repre-
sented by the Morse, Kratzer, Coulomb, etc., potentials [21]. An alternative potential
model suggested to use in the molecular science can be the Woods–Saxon potential.
In order to study this type of potential in the SQM formalism, we need the shape-
invariance approach with a translation of parameters. In addition, the hierarch of
Hamiltonians method is necessary for obtaining explicit eigenvalues in all of the
angular momentum quantum numbers [22,23]. Nevertheless, we can clearly say that
the Woods–Saxon potential can not be applied for � = 0 state in the SQM formalism.
The situation may be arisen from the Woods–Saxon potential which is finite at r = 0,
and cannot satisfy the boundary condition in our approach.

4 Conclusions

We have applied the shape-invariance approach and hierarchy of Hamiltonian method
in the context of SQM to obtain the energy spectra of the Woods–Saxon potential. We
have used a new effective potential which consists of the Woods–Saxon and its square
form. We have obtained an approximate analytical eigenvalue equation for � �= 0
states. We would like to point out that although the SQM formalism works quite well
for the effective Woods–Saxon potential, an extensive application to other effective
Woods–Saxon-like potentials is needed to test the credibility of the method.
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